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Machine Learning Model to Predict Diagnosis of Mild Cognitive
Impairment by Using Radiomic and Amyloid Brain PET
Andrea Ciarmiello, MD,* Elisabetta Giovannini, MD,* Sara Pastorino, PhD,* Ornella Ferrando, PhD,†
Franca Foppiano,† Antonio Mannironi, MD,‡ Antonio Tartaglione, MD,§

Giampiero Giovacchini, MD, PhD,* and The Alzheimer’s Disease Neuroimaging Initiative
Purpose: The study aimed to develop a deep learning model for predicting
amnestic mild cognitive impairment (aMCI) diagnosis using radiomic fea-
tures and amyloid brain PET.
Patients and Methods: Subjects (n = 328) from the Alzheimer’s Disease
Neuroimaging Initiative database and the EudraCT 2015-001184-39 trial
(159 males, 169 females), with a mean age of 72 ± 7.4 years, underwent
PET/CTwith 18F-florbetaben. The study cohort consisted of normal controls
(n = 149) and subjects with aMCI (n = 179). Thirteen gray-level run-length
matrix radiomic features and amyloid loads were extracted from 27 cortical
brain areas. The least absolute shrinkage and selection operator regression
was used to select features with the highest predictive value. A feed-forward
neural multilayer network was trained, validated, and tested on 70%, 15%,
and 15% of the sample, respectively. Accuracy, precision, F1-score, and area
under the curve were used to assess model performance. SUV performance
in predicting the diagnosis of aMCI was also assessed and compared with
that obtained from the machine learning model.
Results: The machine learning model achieved an area under the receiver
operating characteristic curve of 90% (95% confidence interval, 89.4–90.4)
on the test set, with 80% and 78% for accuracy and F1-score, respectively.
The deep learningmodel outperformedSUVperformance (area under the curve,
71%; 95% confidence interval, 69.7–71.4; 57% accuracy, 48% F1-score).
Conclusions: Using radiomic and amyloid PET load, the machine learning
model identified MCI subjects with 84% specificity at 81% sensitivity.
These findings show that a deep learning algorithm based on radiomic data
and amyloid load obtained from brain PET images improves the prediction
of MCI diagnosis compared with SUValone.
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A lzheimer disease (AD) is the most frequent cause of dementia
and is characterized by progressive deterioration of cognitive

functions, especially episodic memory. Because of its influence
on the normal lives of patients and caregivers, AD has now become
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a relevant medical and economic burden on society.1 Mild cognitive
impairment (MCI) is a transitional stage between age-related cogni-
tive decline and AD, and the earliest clinically detectable stage of
progression toward AD.2 Identifying risk factors for progression
from MCI to AD is critical for early therapy. Several biomarkers
have recently been identified and are divided into 3 categories based
on the nature of the underlying pathophysiology.3 Biomarkers of fi-
brillary β-amyloid (Aβ) deposition are high ligand retention on am-
yloid PETor low cerebrospinal fluid (CSF) Aβ42. Biomarkers of tau
pathology (neurofibrillary tangles) are elevated CSF phosphorylated
tau and tau PET ligands. Biomarkers of AD-like neurodegeneration
or neuronal injury are CSF total tau, 18F-FDG PET hypometabolism,
and atrophy on structural MRI in regions characteristic of AD.3

Interest in using radiomics to diagnose and predict outcomes
for several diseases including neurodegenerative disorders has been
steadily increasing. Radiomics is a method that extracts many fea-
tures from medical images using data characterization algorithms.
Starting from acquired images, radiomics uses image segmentation,
data extraction, data reduction, and data modeling. The extracted
features—termed radiomic features—can uncover disease charac-
teristics that cannot be detected by the naked eye. The hypothesis
of radiomics is that the distinctive imaging features of disease
forms may be useful for predicting prognosis and therapeutic re-
sponse for various conditions, thus providing valuable information
for personalized therapy.4

Most radiomics studies of AD have been successfully applied
with MRI. For example, radiomic features of the hippocampal area
have allowed researchers to accurately distinguish AD patients from
normal controls (NCs).5 The machine learning framework has dem-
onstrated its capability in distinguishing stable MCI patients from
progressive MCI patients.6 Finally, a texture analysis study found
texture differences in the corpus callosum and thalamus between
brain MRI scans of AD and MCI patients.7

PET studies, in contrast, are so far more limited. Zhou et al8

showed that fused MRI/FDG images increased the accuracy of the
classification of AD and MCI patients compared with the clinical
model. Li et al9 used FDG PET to study a large sample size of pa-
tients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database and patients from the Huashan Hospital, China. The authors
extracted 168 stable radiomic features for cortical regions of interest.9

The classification experiment led to maximal accuracies of 91.5%,
83.1%, and 85.9% for classifying AD versus NCs, MCI versus NC,
and AD versus MCI, respectively.

High brain uptake of the amyloid ligand 18F-florbetaben (FBB)
has been associated with memory decline in MCI and AD.10–12 Tex-
tural feature analysis is a promising approach to quantitatively assess
cortical uptake and was reported to be useful in assessing amyloid
status.9 Many parameters can be extracted from the images, and
whether and which parameters are useful in improving disease pre-
diction and in supporting clinical decisions must still be assessed.

PET studies with amyloid tracers assessing radiomics in AD
are limited. Ben Bouallegue et al,13 using PETand 18F-florbetapir in
AD patients and in subjects with MCI or significant memory concern,
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showed that appropriate amyloid textural and shape features predict
conversion to ADwith at least as good accuracy as SUV ratio (SUVr).
Nemmi et al14 assessed changes in thewhitematter concentration of
18F-florbetapir in patients with AD and healthy controls. White mat-
ter histogram analysis revealed significant differences between AD
and healthy subjects that were not revealed by SUVr analysis.

The study aims were 2-fold: (1) to develop a deep learning
model for predicting the diagnosis of amnestic MCI (aMCI) using
radiomic features and amyloid brain load; and (2) to compare the di-
agnostic performance of the machine learning model with SUV
predictive ability.
PATIENTS AND METHODS

Population
The study was based on pooled data collected from theADNI

database and the previous work of Ciarmiello et al.10,11 The data-
base’s investigators contributed to the design and implementation
of ADNI and provided data, but did not participate in the analysis
or writing of this report. A complete listing of ADNI investigators
can be found at http://adni.loni.usc.edu/wp-content/uploads/how_
to_apply/ADNI_Acknowledgement_List.pdf.

The ADNI was launched in 2003 as a public-private partner-
ship led by principal investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early AD.
For up-to-date information, see www.adni-info.org. The study by
Ciarmiello et al10,11 aimed to assess the extent to which amyloid
load could be predictive of clinical progression in aMCI. Subject se-
lection procedure and the study protocol can be found in previously
published articles.10,11 The final population consisted of 328 sub-
jects studied with FBB-PET imaging. Among these patients, 179
were aMCI patients and 149 were NCs. Population demographic
characteristics, enrollment criteria, and imaging procedures are de-
scribed in detail elsewhere.10,11,15

PET Imaging and Preprocessing Procedures
The ADNI database and EudraCT 2015-001184-39 PET imag-

ing procedures are described elsewhere.10,11,15 Image postprocessing
was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/SPM12) implemented under MATLAB 9.9 (MATLAB
R2020b, Mathworks Inc, Natick, MA).

PET images were aligned to theMNI T1 template available in
SPM12.11,16 All images were visually inspected by expert neurora-
diologists in the native and template spaces to avoid image artifacts
or misalignments.

PET data were converted to SUV by scaling each image ac-
cording to the relationship between the body weight of each subject
and the injected dose. The SUVr was generated by dividing all re-
gional SUVs by the cerebellar graymatter SUV. To directly compare
SUVs across imaging centers and devices, images were smoothed
with a full-width at half-maximum 8 mm isotropic Gaussian kernel
reported as a suitable value for reliable data harmonization.17

Consistent with previous reports, we used the brain regions
considered to play a key role in the development and progression
of AD.18–21 The volumes of interest (VOIs) used in this analysis
consisted of 27 areas encompassing frontal, parietal, temporal, oc-
cipital, cingulate gyrus, caudate nucleus, and putamen regions.

The VOIs were extracted from the automated anatomical la-
beling atlas22 using the PickAtlas SPM toolbox.23 The left and right
sides of each structure were merged into a single VOI and transferred
onto subject PET images to extract the mean SUVr and radiomic
feature values.
2 www.nuclearmed.com
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Image Analysis and Texture Feature Extraction
In recent years, machine learning and deep learning tech-

niques have been increasingly used for whole-body and brain image
analysis and in neuroimaging to improve diagnostic accuracy in
several psychiatric and neurodegenerative disorders.24–27 Within
the aim of the present study, a deep learning model was used to pre-
dict the diagnosis of MCI using radiomic features and SUVs de-
rived from amyloid PET images. Spatial and intensity heterogeneity
of amyloid PET images were evaluated with first- and second-level
textural features that were extracted as described by Vallières et al28

after gray level rebinning into 64 levels via intensity histogram
equalization.28–30 Texture features were derived from all PET im-
ages under MATLAB R2020b using available radiomic analysis
software (https://github.com/mvallieres/radiomics/).

Among the different available types of radiomic features, we
used a gray-level run-length matrix for the texture analysis as it is
reported to have low variability with different acquisition devices,
reconstruction protocols, and image artifacts.31

The whole set of textural features consisted of the following
13 variables: short-run emphasis, long-run emphasis, gray-level
nonuniformity, run-length nonuniformity, run percentage, low
gray-level run emphasis, high gray-level run emphasis, short-run
low gray-level emphasis, short-run high gray-level emphasis, long-run
low gray-level emphasis, long-run high gray-level emphasis, gray-level
variance, and run-length variance.

A detailed description of each of these features with acro-
nyms and references has been reported by Vallières et al.28

Feature Selection and Classification
We used least absolute shrinkage and selection operator

(LASSO) regression with 10-fold cross-validation to reduce the fea-
tures number by identifying only those with stronger classification
performance.32 This method is widely used in machine and deep
learning to select the minimum number of features able to enhance
prediction accuracy and to prevent overfitting in the model con-
struction.33 Shrink regression coefficients for LASSOwere estimated
using the penalty term called the L1-norm, which is calculated as the
sum of the absolute coefficients. The penaltyworks by forcing the co-
efficient estimates with a minor contribution to the model to zero.
The penalty term is tuned via a constant value called lambda (λ). Be-
cause the performance of the model strongly depends on the value of
λ, tuning parameters were selected using cross-validation. Cross-
validation allows finding the λ value able to minimize the out-of-
sample mean squared error of the predictions. After the LASSO
regression, only features with nonzero coefficients were used as
input into the neural network to classify normal and MCI subjects.

The feed-forward neural multilayer network (FNN) was used
as a classifier. In recent years, several areas of medical imaging—
such as oncology34 and neuroscience35,36—have increasingly ap-
plied neural networks to classify clinical, genetic, or imaging pat-
terns into disease classes and to support diagnosis prediction.

The network architecture is based on several connected levels
(input, hidden, and output layers) consisting of a different number
of nodes. The node number of the input layer is uniquely deter-
mined by the number of features of the input data set. The output
layer neurons were selected according to the output vector dimen-
sion, which is equal to the number of patient groups.

The network architecture used in this study consisted of 2
hidden layers according to the universal approximation theorem
stating that 2 layers are able to approximate any continuous function
of n-dimensional input variables.37 The maximum number of neu-
rons per layer considering m output neurons to train N samples
was given by Nh1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 2ð ÞNp þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= mþ 2ð Þp

and Nh2 ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 2ð ÞNp

for the first and second hidden layers, respectively.38
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TABLE 1. Clinical and Demographic Characteristics of the
Sample

Demographic Data All NC MCI P

n 328 149 179
Male 159 59 100
Female 169 90 79 <0.004
Age, y 72.3 ± 7.4 70.8 ± 6.2 73.6 ± 8 <0.001
Neuropsychological battery
MMSE 27.4 ± 2.9 27.2 ± 7.4 24.6 ± 6.5 <0.00001
CDR-SOB 1.2 ± 1.8 0 ± 0.1 2.1 ± 2 <0.00001

Clinical Nuclear Medicine • Volume 48, Number 1, January 2023 Amyloid PET Radiomics Neural Network Predicts MCI
Performance was evaluated at each iteration with a 10-fold
cross-validation scheme39 in terms of mean squared error, and the
model providing the lowest error was chosen for data analysis.

The network setting included the Levenberg-Marquardt
backpropagation learning algorithm, with a sigmoid tangent trans-
fer function for input and hidden layers and a sigmoid logistic func-
tion in the output layer. Network training was performed with a
learning rate parameter of 1.0e−02 for 30 epochs.

The LASSO logistic regression and neural network analysis
were performed using the Deep Learning Toolbox running under
MATLAB 2020b.

Statistics
Continuous data were tested using independent t tests, with

degrees of freedom adjusted for inequality of variance where appro-
priate. The χ2 analysis was used for categorical variables.

Receiver operating characteristic (ROC) curves with the corre-
sponding area under the curve (AUC) were used to assess the perfor-
mance of model classification. In addition, the diagnostic performance
of the SUV was evaluated with the ROC curve and the AUC, deter-
mining the optimal cutoff value based on metabolic parameters.

Significant differences between AUCs computed using dif-
ferent prediction models were observed using the Hanley and
McNeil method.40
FIGURE 1. Receiver operating characteristic curves of FNNmodel
on the remaining 15% of the study sample. A, ROC curves of train
curve labeled model 1 represents the model performance for disti
used as FNN input.Model 2 represents performance based on SUV
all cases. Model 1 performs statistically significantly better at recog
on overall sample.
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Accuracy, precision, F1-score, and AUC were used to assess
the diagnostic performance and were reported for both deep learn-
ing model and SUV classification.

The differences between themean scores of neuropsychological
tests across groups classifiedwith deep learning–selected radiomic fea-
tures were determined with 1-way analysis of variance (ANOVA).
Odds ratios and their 95% confidence intervals, positive predictive
value, and negative predictive value were calculated to estimate how
strongly the predicted diagnosis was associated with clinical status.

The assumption of normality was tested using the Kolmogorov-
Smirnov statistic. Two-tailed P values of less than 0.05 were consid-
ered statistically significant.
RESULTS
Demographic and clinical data are summarized in Table 1.

The study sample consisted of 328 subjects with an average age
of 70.8 ± 6.2 years for healthy controls and 73.6 ± 8 years for pa-
tients with MCI. The overall percentage of men was 48% (159 of
328). As expected, the study population included a slightly higher
percentage of women (Table 1). The mean age of MCI subjects
was significantly higher than for NCs (P = 0.001). Predictably,
MCI individuals had greater cognitive deficits than controls on
Mini-Mental State Examination (MMSE) and Clinical Dementia
Rating Scale Sum of Boxes (CDR-SOB) (Table 1).

Thirteen textural features and SUVrs were extracted from
each of the 27 brain regions selected for this study. The complete
set consisted of 351 textural and 27 metabolic variables for a total
of 378 predictors. All variables were processed with the LASSO re-
gression method to select only those with higher predictive values.
Feature dimension reduction via the LASSO algorithm resulted in
a predictors drop from 378 to 61, of which 34 were textural and 27
were metabolic variables (Supplemental Figure S1, Supplemental Dig-
ital Content, http://links.lww.com/CNM/A390; Supplemental Table
S1, Supplemental Digital Content, http://links.lww.com/CNM/A390).

The network model used for this article consists of an input
buffer with 63 input nodes, 2 hidden layers with, respectively, 24
and 8 nodes and 2 output nodes. The input nodes consist of 61 features
identified by the LASSO regression plus age and gender. The output
nodes represent the clinical diagnosis (Supplemental Figure S3,
trained on 70%of the study set, validated on 15%, and tested
ed deep learning model tested on the 15% of sample. ROC
nguishing MCI from NCs based on radiomic features and SUV
only. B, ROC curves showingmodel performance tested on
nizing MCI subjects from healthy controls in test set as well as
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TABLE 2. Performance Comparison of Machine Learning
Algorithm and SUV

Parameter Model 1* Model 2† Hanley P

Accuracy (%) 80 (70.0–90.8) 57 (44.2–70.1)
Precision (%) 74 (62.6–85.6) 50 (36.9–63.1)
F1-score (%) 78 (67.7–89.2) 48 (34.7–60.9)
AUC (%) 90 (89.4–90.4) 71 (69.7–71.4) 0.02

Probability of belonging to normal or patient class, determined with SUV and
radiomic features (*) or SUV alone (†). Hanley test indicates significant difference
of deep learning AUC compared with SUVAUC on independent test set.

Ciarmiello et al Clinical Nuclear Medicine • Volume 48, Number 1, January 2023
Supplemental Digital Content, http://links.lww.com/CNM/A390).
Model performance in terms of mean squared error for train, valida-
tion, and test data set is showed in Supplemental Figure S2, Supple-
mental Digital Content, http://links.lww.com/CNM/A390. Model
diagnostic performance evaluated on AUCs was 94%, 91%, and
90% for train, validation, and test set, respectively (Hanley P > 0.05).

The deep learning algorithmwas trained on 70%of the study set,
validated on 15%, and tested on the remaining 15%of the study sample
(Supplemental Figure S2, Supplemental Digital Content, http://links.
lww.com/CNM/A390). Figure 1 shows the ROC curves obtained on
the test set and on the whole population using the FNN model.

The AUC for the prediction of MCI was 90% on the test set
and 94% on the whole sample. These findings indicate that the neu-
ral network model can distinguish MCI subjects from NCs. As
shown in Table 2, the accuracy, precision, and F1-score were
80%, 74%, and 78%, respectively.

The ROC curves obtained from SUVr alone are shown in
Figure 1. The AUC for prediction of MCI from SUV was 71% on
the test set and 70% on the whole sample. Using SUVr, the accu-
racy, precision, and F1-score were 57%, 50%, and 48%, respec-
tively (Table 2).

The Hanley test, used to measure the significance of the dif-
ference between the AUCs obtained with the FNN and the SUVr,
resulted in a P = 0.015. These findings showed that the differences
are statistically significant and that FNN performs better at differen-
tiating MCI subjects from healthy controls in the test set and overall
sample (Table 2).

Table 3 indicates the comparison between aMCI patients and
NCs based on SUVr and the network classification. Feed-forward
neural multilayer network classifier identified individuals with
TABLE 3. Bivariate Analysis of Predicted Status on Clinical Diagno

Prediction Model Predicted Class

True Class

χ2 SP (95%NC MCI

Model 1* NC 121 (81%) 29 (16%)
MCI 28 (19%) 150 (84%) 138‡ 84

(78–
Model 2† NC 109 (55%) 89 (68%)

MCI 40 (20%) 90 (69%) 19§ 50
(43–

*Probability of belonging to normal or patient class, determined with FNN using radio
†SUV prediction was based on 1.3 threshold value determined in previous articles. Bo
‡P < 0.000001.
§P < 0.0003.
SP, specificity; SE, sensitivity; OR, odds ratio; PPV, positive predictive value; NPV, ne
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cognitive impairment with a sensitivity of 81% and a specificity
of 84%, as compared with NCs (χ2 = 138; P < 0.000001). The pos-
itive and negative predictive values were 81% and 84%, respec-
tively (Table 3), whereas SUV-based classification identified aMCI
subjects with a sensitivity of 73% and specificity of 50% (χ2 = 19;
P < 0.0003). All statistical measures considered—χ2, specificity,
sensitivity, odds ratio, positive predictive values, and negative pre-
dictive values—indicated a higher statistical significance for the
neural network classifier than the SUV-only classification.

Differences between meanMMSE and the CDR-SOB scores
were assessed in the predicted classes by 1-way ANOVA (Figs. 2, 3).

The classes of normal and MCI-affected subjects were pre-
dicted using the score derived from the machine learning model. To
compare the performance of the neural model with the classification
derived from the SUVs, the optimal threshold value predefined with
the ROC analysis of the SUV (Youden index = 1.37) was used.

Analysis of results showed a significant difference in MMSE
(28.9 ± 1.5 vs 26.2 ± 3.2, P = 2.5e−17) and CDR-SOB (0.35 ± 1.0 vs
1.98 ± 2.0, P = 6.0e−16) scores between positive and negative groups,
as predicted by the deep learning model. Classification based on the
SUValso showed a significant difference between the means of neuro-
cognitive test scores of the sample classes, although the F statistic
showed less significance. Table 4 provides the results of the ANOVA
analysis for subject classification predicted with both models.
DISCUSSION
This study assessed the role of FNN and the use of radiomic

features extracted by amyloid PET images in improving the predic-
tion of cognitive deficits. Overall, results confirmed that radiomic
features (objective measures of tissue heterogeneity) may be useful
in reliably predicting cognitive function deficits in aMCI patients.
In particular, the analyses identified 27 radiomic features and
SUVr’s as the optimal variable set providing the best predictive,
combined (textural and nontextural) model to distinguish between
subjects with and without cognitive deficits. Specificity and sensi-
tivity had higher statistical significance for the FNN outcome than
for SUVr prediction (Table 3).

The diagnostic performance of FNN evaluated as the area un-
der the ROC curve compares favorably with the results obtained in
other radiomic studies in patients with cognitive impairment.36–38

The SUVr-based diagnostic performance assessed in our sample
was similar to that reported by other authors.39,40 Note, however,
that direct comparisons of AUC accuracy may be biased by variables
sis

CI) SE (95% CI) OR (95% CI) PPV (95% CI) NPV (95% CI)

81 22.35 81 84
89) (75–87) (12.62–39.6) (74–87) (79–90)

73 2.76 55 69
58) (66–80) (1.73–4.39) (48–62) (61–77)

mic features plus SUVas input.
th estimates included sex and age in the prediction model.

gative predictive value.
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FIGURE 2. Box plot ofMMSE in MCI and NC predicted classes. Box plot showingMMSE values for predicted classes of MCI and
NC. Box indicates median and interquartile range. Whiskers above and below the boxes indicate the 90th and 10th
percentiles. Model 1 = radiomic features plus SUV, model 2 = SUV. Both prediction models included sex and age.

Clinical Nuclear Medicine • Volume 48, Number 1, January 2023 Amyloid PET Radiomics Neural Network Predicts MCI
such as the severity of cognitive deficits, the radiotracer, and variables
included in the model.

Moreover, findings support that the combined textural and
nontextural model significantly predicted performance in cognitive
tests, with a statistical significance that was similar or slightly higher
than that of the model based only on SUVr. This finding has impor-
tant clinical implications, supporting the usefulness of radiomic fea-
tures in improving group stratification based on imaging tech-
niques. Higher cortical SUVr in aMCI patients versus NCs is a
consistent finding.10,11,41

Our results are consistent with and add new information to
the results of 2 previous studies with PET and amyloid tracers. In
2015, Shokouhi et al42 found a higher inverse correlation between
the CSF amyloid-β and a weighted 2-point correlation function de-
rived from 11C-PiB PET images—a measurement providing de-
tailed information about image clustering—than between the CSF
amyloid-β and SUVr mean or median in NCs and MCI patients.
More recently, Ben Bouallegue et al13 showed that the variables
with the highest prognostic value were composite SUVr, skewness,
local minima, Geary’s index, gradient norm maximal argument,
and the support vector machine model, which somehow had higher
accuracy. The novelty of our study lies in the combination of the
radiopharmaceutical—the amyloid tracer FBB—with the data analysis
FIGURE 3. Box plot of CDR-SOB in MCI and NC predicted classes
and NC. Box indicates median and interquartile range. Whiskers
percentiles. Model 1 = radiomic features plus SUV, model 2 = SUV

© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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system or neural network. Neural networks are some of the most
commonly used statistical models and have been successful in bio-
marker discovery studies in AD.43 However, to the best of our
knowledge, the FNN had never been used to differentiate aMCI pa-
tients from NCs, nor were they correlated with cognitive deficits.

In our study, the association between textural features and pa-
tients’ clinical diagnosis was more significant than that observed for
the SUVr metric (Table 3). This finding suggests that the spatial ar-
rangement of similar signal intensity voxels can have a strong pre-
dictive value. Indeed, the association between low gray-level tex-
tural features with the clinical diagnosis suggests that contiguous re-
gions with low signal intensity in FBB-PET images may predict
cognitive impairment. Moreover, features measuring rapid gray-level
changes in gray-level intensity within the target region are signifi-
cantly related to clinical status and appear to reflect tracer uptake
heterogeneity rather than the signal increase observed in cognitively
impaired subjects.

In other studies, the radiomic model included a higher num-
ber of parameters showing that adding multiple variables in a study
with an adequate sample size increases the accuracy of the model.44–46

For example, Zhang et al45 obtained an accuracy of 93.2% classifying
AD from healthy controls when combining 3modalities of biomarkers
(MRI, FDG PET, and CSF biomarkers), compared with only 86.5%
. Box plot showing CDR-SOB values for predicted classes MCI
above and below the boxes indicate the 90th and 10th
. Both prediction models included sex and age.
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TABLE 4. Analysis of Variance Across MMSE and CDR-SOB in
Subjects Groups Classified According to SUV and Radiomic
Features Plus SUV Prediction

Test Classification NC MCI F P

CDR-SOB Model 1* 0.35 ± 1.02 1.98 ± 2.04 73 6.0e−16

Model 2† 0.72 ± 1.24 2.34 ± 2.35 62 6.7e−14

MMSE Model 1* 28.87 ± 1.48 26.2 ± 3.23 81 2.5e−17

Model 2† 28.21 ± 2.11 25.71 ± 3.55 60 1.4e−13

*Probability of belonging to normal or patient class was determined with FNN
using radiomic features plus SUVas input.

†Model 2 reports SUV prediction based on 1.3 threshold value determined in pre-
vious articles.
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when using the best individual modality of biomarkers. Similarly,
the authors achieved an classification accuracy of 76.4% in distin-
guishing MCI and healthy controls using the 3 modalities of bio-
markers, compared with only 72% using the best individual modal-
ity of biomarkers.45 Young et al44 also showed that the prediction of
MCI conversion based on the combination of MRI, FDG PET, and
CSFwas substantially more accurate than any other modality alone.

Given the need for large sample sizes (generally consisting of
several hundred subjects) to develop and assess predictive models,
our analyses were performed on a total sample of 328 subjects un-
dergoing FBB-PET, including 149 NC and 179 aMCI patients. In-
deed, as a rough indication, at least an estimated 10 to 15 patients
must be included in a radiomic study for each feature when statisti-
cal tests are used to test a specific hypothesis.47 We used a total of
27 variables selected by the LASSO method for the permutation.
Therefore, our sample appears to have been of adequate size for
the desired statistical analysis.

Because of the transversal design of the study, we were able
to compare radiomic features in 2 groups that differed in their cog-
nitive profiles but were not able to assess whether radiomic features
also predict cognitive decline. Choi and Jin48 developed an auto-
matic image interpretation system based on a deep convolutional
neural network that accurately predicted future cognitive decline
in MCI patients using FDG and 18F-florbetapir PET. Receiver oper-
ating characteristic analysis revealed that the performance of the
neural network–based approach was significantly superior to that
of conventional quantification methods. Output scores of the net-
work were significantly correlated with the neuropsychological
measures of cognitive impairment.48

CONCLUSIONS
In summary, a neural network is a promising approach for

predicting diagnosis and cognitive performance in aMCI patients.
The best predictive model was composed of SUVr and 34 textural
features. Adding textural features to the prediction model provided
by SUVr significantly increased the overall prediction of the AUC
in all cerebral regions. The combined model significantly predicted
performance in cognitive tests and had a higher statistical signifi-
cance than the model based only on SUVr. Because a single bio-
marker is unlikely to improve the diagnosis of AD, machine learn-
ing by analyzing multiple parameters extracted from images and de-
rived from a clinical setting will support the identification of a panel
of markers capable of ensuring earlier and more accurate diagnosis.

REFERENCES
1. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria,

risk factors and biomarkers. Biochem Pharmacol. 2014;88:640–651.
6 www.nuclearmed.com

Copyright © 2022 Wolters Kluwer H
2. MarkesberyWR. Neuropathologic alterations in mild cognitive impairment:
a review. J Alzheimers Dis. 2010;19:221–228.

3. Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive
classification scheme for Alzheimer disease biomarkers. Neurology. 2016;
87:539–547.

4. Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges
of image analysis. Eur Radiol Exp. 2018;2:36.

5. Feng F,Wang P, Zhao K, et al. Radiomic features of hippocampal subregions
in Alzheimer’s disease and amnestic mild cognitive impairment.Front Aging
Neurosci. 2018;10:290.

6. Moradi E, Pepe A, Gaser C, et al. Machine learning framework for early
MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage.
2015;104:398–412.

7. Zhang J, Yu C, Jiang G, et al. 3D texture analysis on MRI images of
Alzheimer’s disease. Brain Imaging Behav. 2012;6:61–69.

8. Zhou H, Jiang J, Lu J, et al. Dual-model radiomic biomarkers predict devel-
opment of mild cognitive impairment progression to Alzheimer’s disease.
Front Neurosci. 2018;12:1045.

9. Li Y, Jiang J, Lu J, et al. Radiomics: a novel feature extraction method for
brain neuron degeneration disease using (18)F-FDG PET imaging and its
implementation for Alzheimer’s disease and mild cognitive impairment.
Ther Adv Neurol Disord. 2019;12:1756286419838682.

10. Ciarmiello A, Giovannini E, Riondato M, et al. Longitudinal cognitive de-
cline in mild cognitive impairment subjects with early amyloid-beta neocor-
tical deposition. Eur J Nucl Med Mol Imaging. 2019;46:2090–2098.

11. Ciarmiello A, Tartaglione A, Giovannini E, et al. Amyloid burden identifies
neuropsychological phenotypes at increased risk of progression to Alzheimer’s
disease in mild cognitive impairment patients. Eur J Nucl Med Mol Imaging.
2019;46:288–296.

12. Florek L, Tiepolt S, Schroeter ML, et al. Dual time-point [18F]Florbetaben
PET delivers dual biomarker information in mild cognitive impairment and
Alzheimer’s disease. J Alzheimers Dis. 2018;66:1105–1116.

13. Ben Bouallegue F, Vauchot F,Mariano-Goulart D, et al. Diagnostic and prog-
nostic value of amyloid PET textural and shape features: comparison with
classical semi-quantitative rating in 760 patients from the ADNI-2 database.
Brain Imaging Behav. 2019;13:111–125.

14. Nemmi F, Saint-Aubert L, Adel D, et al. Insight on AV-45 binding in white
and grey matter from histogram analysis: a study on early Alzheimer’s dis-
ease patients and healthy subjects. Eur J Nucl Med Mol Imaging. 2014;41:
1408–1418.

15. ADNI. Defining Alzheimer’s Disease: Procedure Manual. 2008. Available
at: http://adniloniuscedu/wp-content/uploads/2008/07/adni2-procedures-
manualpdf. Accessed March 17, 2020.

16. Koole M, Nelissen N, Khela M, et al. Template comparison for spatial nor-
malization of [18F]flutemetamol brain PET images. J Nucl Med. 2010;51:
571–571.

17. Tsutsui Y, Awamoto S, Himuro K, et al. Characteristics of smoothing filters
to achieve the guideline recommended positron emission tomography image
without harmonization. Asia Ocean J Nucl Med Biol. 2018;6:15–23.

18. Barthel H, Gertz HJ, Dresel S, et al. Cerebral amyloid- β PET with
florbetaben (18F) in patients with Alzheimer’s disease and healthy controls:
a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–435.

19. Ong K, Villemagne VL, Bahar-Fuchs A, et al. 18F-florbetaben Aβ imaging
in mild cognitive impairment. Alzheimers Res Ther. 2013;5:4.

20. Tiepolt S, Hesse S, Patt M, et al. Early [(18)F]florbetaben and [(11)C]PiB
PET images are a surrogate biomarker of neuronal injury in Alzheimer’s dis-
ease. Eur J Nucl Med Mol Imaging. 2016;43:1700–1709.

21. Pfeil J, Hoenig MC, Doering E, et al. Unique regional patterns of amyloid
burden predict progression to prodromal and clinical stages of Alzheimer’s
disease. Neurobiol Aging. 2021;106:119–129.

22. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated ana-
tomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:
273–289.

23. Maldjian JA, Laurienti PJ, Kraft RA, et al. An automated method for neuro-
anatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.
Neuroimage. 2003;19:1233–1239.

24. Mateos-Perez JM, Dadar M, Lacalle-Aurioles M, et al. Structural neuroim-
aging as clinical predictor: a review of machine learning applications.
Neuroimage Clin. 2018;20:506–522.

25. Chen CL, Liang CK, Yin CH, et al. Effects of socioeconomic status on
Alzheimer disease mortality in Taiwan. Am J Geriatr Psychiatry. 2020;28:
205–216.
© 2022 Wolters Kluwer Health, Inc. All rights reserved.

ealth, Inc. All rights reserved.

http://adniloniuscedu/wp-content/uploads/2008/07/adni2-procedures-manualpdf
http://adniloniuscedu/wp-content/uploads/2008/07/adni2-procedures-manualpdf
www.nuclearmed.com


Clinical Nuclear Medicine • Volume 48, Number 1, January 2023 Amyloid PET Radiomics Neural Network Predicts MCI
26. Kim JY, Oh D, Sung K, et al. Visual interpretation of [(18)F]Florbetaben
PET supported by deep learning-based estimation of amyloid burden. Eur J
Nucl Med Mol Imaging. 2020;48:1116–1123.

27. Choi H, Kim YK, Yoon EJ, et al. Cognitive signature of brain FDG PET
based on deep learning: domain transfer fromAlzheimer’s disease to Parkinson’s
disease. Eur J Nucl Med Mol Imaging. 2020;47:403–412.

28. Vallières M, Freeman CR, Skamene SR, et al. A radiomics model from joint
FDG-PET and MRI texture features for the prediction of lung metastases in
soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–5496.

29. Hatt M, Majdoub M, Vallières M, et al. 18F-FDG PET uptake characteriza-
tion through texture analysis: investigating the complementary nature of het-
erogeneity and functional tumor volume in a multi-cancer site patient cohort.
J Nucl Med. 2015;56:38–44.

30. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol.
2016;61:R150–R166.

31. Carles M, Fechter T, Marti-Bonmati L, et al. Experimental phantom evalua-
tion to identify robust positron emission tomography (PET) radiomic fea-
tures. EJNMMI Phys. 2021;8:46.

32. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc
B Methodol. 1996;58:267–288.

33. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized lin-
ear models via coordinate descent. J Stat Softw. 2010;33:1–22.

34. Landhuis E. Deep learning takes on tumours. Nature. 2020;580:551–553.
35. Savage N. How AI and neuroscience drive each other forwards. Nature.

2019;571:S15–S17.
36. Pedersen M, Verspoor K, Jenkinson M, et al. Artificial intelligence for clin-

ical decision support in neurology. Brain Commun. 2020;2:fcaa096.
37. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief

nets. Neural Comput. 2006;18:1527–1554.
© 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2022 Wolters Kluwer H
38. Huang GB. Learning capability and storage capacity of two-hidden-layer
feedforward networks. IEEE Trans Neural Netw. 2003;14:274–281.

39. Stone M. Cross-validatory choice and assessment of statistical predictions
(with discussion). J R Stat Soc B Methodol. 1976;38:102–102.

40. Hanley JA, McNeil BJ. A method of comparing the areas under receiver op-
erating characteristic curves derived from the same cases. Radiology. 1983;
148:839–843.

41. Kim JY, Lim JH, Jeong YJ, et al. The effect of clinical characteristics and
subtypes on amyloid positivity in patients with amnestic mild cognitive im-
pairment. Dement Neurocogn Disord. 2019;18:130–137.

42. Shokouhi S, Rogers BP, Kang H, et al. Modeling clustered activity increase
in amyloid-beta positron emission tomographic images with statistical de-
scriptors. Clin Interv Aging. 2015;10:759–770.

43. Zafeiris D, Rutella S, Ball GR. An artificial neural network integrated pipe-
line for biomarker discovery using Alzheimer’s disease as a case study.
Comput Struct Biotechnol J. 2018;16:77–87.

44. Young J, Modat M, Cardoso MJ, et al. Accurate multimodal probabilistic
prediction of conversion to Alzheimer’s disease in patients with mild cogni-
tive impairment. Neuroimage Clin. 2013;2:735–745.

45. Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer’s
disease and mild cognitive impairment. Neuroimage. 2011;55:856–867.

46. Madabhushi A, Agner S, Basavanhally A, et al. Computer-aided prognosis:
predicting patient and disease outcome via quantitative fusion of multi-scale,
multi-modal data. Comput Med Imaging Graph. 2011;35:506–514.

47. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images aremore than pictures,
they are data. Radiology. 2016;278:563–577.

48. Choi H, Jin KH. Predicting cognitive decline with deep learning of brain me-
tabolism and amyloid imaging. Behav Brain Res. 2018;344:103–109.
www.nuclearmed.com 7

ealth, Inc. All rights reserved.

www.nuclearmed.com

